

THE AUSTRALIAN NATIONAL UNIVERSITY

Brlcc – recent developments in theoretical conversion coefficients

T. Kibédi (ANU)

Brlcc status Conversion coefficients for superheavy elements Electronic factors for E0 transitions

Collaborators M.B. Trzhaskovskaya (Petersburg Nuclear Physics Institute, Russia) M. Gupta (Manipal University, India) G. Gosselin, V. Meot, and M. Pascal (*CEA*, Saclay, France) A.E. Stuchbery and D. Tsifakis (ANU)

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

Electromagnetic Decay and Nuclear Structure

Ei	J ^π Ε _γ , L, Δπ	Energetics $E_i = E_f + E_{\gamma} + 0 = p_r + p_{\gamma},$ where $T_r = (p_r)^2$	of γ-decay: + T _r ²/2M; usually T _r /E _γ ~10 ⁻⁵			
E _f	J^π_f	Angular moi rules; multi	mentum and polarities	parity selec	tion	
AA	- ! +		$ J_{i}^{-}J_{f} \leq L \leq J$	_i + J _f ; L ≠ 0	$J_i = J_f$	
Multipolarity known		$\Delta \pi = \mathbf{no};$	E2, E4, E6	M1, M3, M5	EO	
u	nique $\Delta \pi$	$\Delta \pi = $ yes; E1, E3, E5 M2, M4, M6				

Mixed multipolarity $\delta^2(\pi L) = I_{\gamma}(\pi L) / I_{\gamma}(\pi L)$

Basic concept

Transition probability $\lambda_{T} = \lambda_{\gamma} + \lambda_{K} + \lambda_{L} + \lambda_{M} + \lambda_{\pi}$ Conversion Coefficient $\alpha_{ce,\pi} = \lambda_{ce,\pi} / \lambda_{\gamma}$

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

Conversion electron process and electromagnetic interaction

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

ICC calculations – Atomic field model

Band et al., ADNDT 81 (2002) 1

- Relativistic Dirac-Fock method
- One-electron approximation
- Free neutral atom
- Screening of the nuclear field by the atomic electrons
- Spherically symmetric atomic potential
- Relativistic electron wave functions
- Experimental electron binding energies

- Finite nuclear size
- Dynamic (penetration) effects incorporated using the Surface Current model
- Spherically symmetric nucleus; most abundant isotope

Atomic many body correlations: factor ~2 for E_{kin}(ce) < 1 keV
 Partially filled valence shell: non-spherical atomic field
 Binding energy uncertainty: <0.5% for E_{kin}(ce) > 10 keV
 Chemical effects: <<1%

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

Which atomic model to choose

ML	Shell	N	"No Hole" BTNTR		"Self Cons RNIT	sistent" (1)	"Frozen Orbital" RNIT(2)	
				χ²/(N-1)		χ²/(N-1)		χ²/(N-1)
All	All	229	+0.70(40)	1.82	-0. 61 <i>(14)</i>	1.01	-0.93(14)	0.87
Tot	All	63	+ 0.32(25)	0.79	-0.55(24)	0.76	-0.71(24)	0.73
K	All	91	+ 1.50(120)	3.14	-0.18(21)	1.09	-0.72(21)	0.80
K/L	All	56	+ 0.00(31)	0.83	-1.64(31)	0.96	-1.94(30)	1.02
E2	All	115	+ 0.21(23)	1.01	-0.77(23)	0.89	-0.93(23)	0.90
M4	All	49	+0.98(68)	3.87	-0.51(20)	1.29	-0.93(20)	0.72
ICCs known better than 1.5% rel. unc.								
All	All	25	+0.77(51)	8.21	-0.56(26)	2.12	-0.95(17)	1.06

Bricc computer program

- General tool to obtain
 - electron conversion coefficients: α_i ; i=K, L1, L2, ...R2 shells; L=1-5
 - electron-positron pair conversion coefficients: L=1-3
 - E0 electronic factors: Ω_i (K,L1,L2) and Ω_{π}
- ENSDF evaluation tool to calculate:
 - ► $\alpha_i \pm \Delta \alpha_i$ for the GAMMA records for a given Z, E_{γ} and for pure or mixed multipolarities.
 - ▶ Correct treatment of Uncertainties in E and MR; symmetric, asymmetric or limits
 - GAMMA & GAMMA continuation records scanned for E, DE, M, MR, DMR, RI, DRI, TI & DTI, CC, DCC
 - ► Calculation report
 - ▶ New G cards with CC and DCC values
 - New S_G cards for other applications
 - ▶ MERGE option to combine new cards with ENSDF file, old records removed

BriccFO(Default) and BriccNH data tables

Data Table	Reference	Ζ	Shells/IPF	L	TranEner [keV]ª	
Internal Conversio	n Coefficient (ICC)					
BriccFO	2008Ki07 - based on the model using the <i>'Frozen Orbitals'</i> approximation of 2002Ba85	5–110	All shells	1–5	ε _{ic} +1–6000	
BriccNH	2008Ki07 - based on the model using the 'No Hole' approximation of 2002Ba85	5–110	All shells	1–5	ε _{ic} +1–6000	
Pair Conversion Coefficient (PCC)						
ScPcc	<u>1979Sc31</u>	0–100 ^b	IPF	1–3	1100–8000	
НоРсс	<u>1996Ho21</u>	50–100	IPF	1–3	1100–8000	
Electronic factor Ω	(E0) ^c					
HsOmg	<u>1969Ha61</u>	30–42	K ^d ,L ₁ ^e ,L ₂ ^f	0	ε _{ic} +6–1500	
BeOmg	<u>1970Be87</u>	40–102	К	0	51 ^f –2555	
		40–102	L ₁ ,L ₂	0	51–2555	
PaOmg	<u>1986PaZM</u>	8–40	Ke	0	511–12775	
		8–40	IPF	0	1431–12775	

^a ε_{ic} is the binding energy for the ic-shell

^b Used for Z < 50

^c Electronic factors are only calculated for even Z values at present

- ^d Not used
- ^e Used for Z < 40

^f For Z=40–58: 51.1 keV; for Z=60–82: 102.2 keV; for Z=84–96: 153.3 keV and for Z=98–102: 204.4 keV

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

Brlcc – Recent developments

Version Date

0.0	15-Nov-2003	Project initiated at the <u>NSDD coordination meeting</u> (Vienna)
1.0	6-Apr-2004	Tabulations using the 'No Hole' approximation completed for ϵ_{ic} +1–6000 keV energies and Z=10–95 atomic numbers.
1.3	20-Dec-2004	BrIcc relesed for ENSDF evaluators.
	6-Jun-2005	NSDD coordination meeting (McMaster) adopted the 'Frozen Orbitals' approximation.
2.0	1-Sep-2005	Tabulations using the 'Frozen Orbitals' approximation completed. BrIcc program logic, exception and error handling improved.
2.1	1-Oct-2005	BrIccS ('slave') version developed and the new ANU web interface created.
2.0a	19-Dec-2005	Corrected a bug in the BrIcc MERGE operation.
2.0b	12-Jan-2006	Corrected a bug in the BrIcc MERGE operation.
2.1	28-Feb-2007	User selectable data tables, including <i>BrIccFO</i> , <i>BrIccNH</i> , <i>HsIcc</i> and <i>RpIcc</i> were added to the ANU web interface.
~ ~	4 Jan 2009	The BrIccFO and the BrIccNH data tables have been recalculated for several chemical
2.2	4-Jan-2008	elements and the range of the tables have been extended for $Z=5-110$.
2.2a	13-Jul-2008	The lowest tabulated point in the <i>BrIccFO</i> and the <i>BrIccNH</i> data tables for $Z=88$, 98, 100, 101 and 102 K-shell was 2 keV above the binding energies.
	27-Nov-2008	Minor bug in the Slave version fixed. For pure and mixed ICC`s and for transition energy within 1 keV to the binding energy incorrect XML code was returned.
2.2b	20-Jan-2009	For Z=34 incorrect $\Omega_{IPF}(E0)$ values were used for the PaOmg data table.

Brlcc (v2.3) – Current programs

- Intel Fortran compiler on Windows, Linux, Mac
- Improvements in the code, fixed several bugs
 32/64 bit
- <u>BrIcc</u> ENSDF evaluation tool / desktop application to obtain ICC`s
- <u>BrIccS</u> slave program to be used from other programs (DDEP, Web)
- <u>BrIccG</u> to chart ICC values vs. transition energy
- <u>BrIccMixing</u> to deduce mixing ratio from CE data
- BrIccEmis under development

If no MR is given use NEW DEFAULT values of MR=1 for E2/M1 and E3/M2 MR=0.1 for M2/E1, M3/E2, E4/M3, M5/E4, M4/E3 and E5/M4

MREOE2=EK(EO)/EK(E2) experimental EO/E2 mixing ratio BrIcc will read from Continuation G records

If CC > 0.0001 total ICC will be put on G record (56-64) Otherwise CC will be put on the S_G record NEW: Let user select cut-off value of CC

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

BrlccG (v2.3) on the web: Calculator & Grapher

http://bricc.anu.edu.au/index.php

Unique users since 2005: 24815 (95k page loads)

	Skip Navigation ANU Home Search ANU RSPhysSE Nucl. Phys. Home
I ANU	Department of Nuclear Physics
THE AUSTRALIAN NATIONAL UNIVERSITY	Research School of Physics and Engineering
BrIcc • BrIcc Home • BrIcc Grapher • Quick reference • Data tables • Program manual • Obtaining BrIcc • Version history • Authors Nuclear Structure Links	Bricc v2.3G Conversion Coefficient Grapher 2 (atomic number or symbol) 40 Multipolarity E2 δ Enter (optional) uncertainty in δ as x or +x-y Shell or Ratio
 ANU Nuclear Physics National Nuclear Data Center IAEA Nuclear Data Centre NSDD network DDEP network 	Shell - • OR Shell1 - • over Shell2 - • Show Subshells Generate Graph Reset (It may take up to 30 seconds for the graph to be created)
3	Reference: <u>2008Ki07</u> T. Kibédi, T.W. Burrows, M.B. Trzhaskovskaya, P.M. Davidson, C.W. Nestor, Jr. <i>'Evaluation of theoretical conversion coefficients using BrIcc'</i> Nucl. Instr. and Meth. A 589 (2008) 202-229

BrlccG (v2.3) - Grapher

http://bricc.anu.edu.au/index.php

	Skip Navigation ANU Home Search ANU RSPhysSE Nucl. Phys. Home
INU ANU	Department of Nuclear Physics
THE AUSTRALIAN NATIONAL UNIVERSITY	Research School of Physics and Engineering
BrIcc	BrIcc v2.3G
Brice Grapher	Conversion Coefficient Grapher
Ouick reference	
Quick reference	Z (atomic number or symbol)
	82
Obtaining Bries	Multipolarity
Version history	m_{1+e_2} \overline{a} 0.6
 Version history Authors 	
Additors	Enter (optional) uncertainty in o as \mathbf{x} or $+\mathbf{x}-\mathbf{y}$
Nuclear Structure Links	Shell OF Ratio
• ANU Nuclear Physics	Shell - • OR Shell1 K • over Shell2 L •
 National Nuclear Data Center 	Show Subshells
 IAEA Nuclear Data Centre 	Generate Graph Reset
• NSDD network	(It may take up to 30 seconds for the graph to be created)
 DDEP network 	
\$	Reference: <u>2008Ki07</u> T. Kibédi, T.W. Burrows, M.B. Trzhaskovskaya, P.M. Davidson, C.W. Nestor, Jr. <i>'Evaluation of theoretical conversion coefficients using BrIcc'</i> Nucl. Instr. and Meth. A 589 (2008) 202-229

Conversion coefficients for superheavy elements Z=111 to 126

<u>With</u> M.B. Trzhaskovskaya, M. Gupta and A.E. Stuchbery Accepted in ADNDT

Existing ICC tables

 Rysavy and Dragoun, ADNDT 78 (2001) 129 Dirac-Slater atomic model, few energy points
 Band et al., ADNDT 81 (2002) 1 Relativistic Dirac-Fock atomic model, "No-Hole" approximation, from L1 shell binding energy

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

Conversion coefficients for superheavy elements Z=111 to 126

Input parameters

Adopted atomic masses
 Valence electron configurations
 Neutral atom binding energies

Next shell closure at Z=114, 120 or <u>126</u> N=<u>184</u>

IUPAC Atomic Weights and Isotopic Abundances: Z=111-116, 118

Z=117 new isotopes 2010Og01

K-shell binding energies

Global fit 1979Se11 Sevier Z=10-95 2002Ba85 Band et al. Z>95

Adopted 1977Ca31 Carlson & Nestor relativistic Dirac-Fock with semi-empirical corrections

New systematic calculations needed!

New relativistic Dirack-Fock calculations with QED corrections (2002Ga47, 2007De52)

Z=126 E2 multipolarity 1 – 6000 keV All shells E1-E5 M1-M5

More electron shells used Not compatible with current Brlcc

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

NSDD IAEA Vienna 4-8 April 2011

NICC Rysavy and Dragoun, ADNDT 78 (2001) 129 Systematically larger by 5-10%

BrlccV1.3 (2002Ba85) Band et al., ADNDT 81 (2002) 1 Up to 5% for E2 in K and L1

BrlccFO / BrlccNH "Frozen orbitals" vs. "No-Hole" Up to 5% for E2 in K and L1 Selected conversion coefficients (ICC) for Z = 126 obtained from various theoretical calculations.

Shell	E_{tr}	ICC(M1)				ICC(E2)			
	[keV]	NICC	BrIce V1.3	$BrIccNH^{(a)}$	$\operatorname{BrIecFO}^{(b)}$	NICC	BrIce V1.3	$\mathrm{BrIecNH}^{(a)}$	$\operatorname{BrIecFO}^{(b}$
		[24]	[8]			[24]	[8]		
Total	10	1.883E+4	_	1.670E+4	1.673E+4	2.248E+6	_	2.070E+6	2.072E+6
	50	5.128E+2	_	4.647E+2	4.650E+2	4.555E+3	-	4.368E+3	4.374E+3
	100	2.445E+2	2.24E+2	2.238E+2	2.243E+2	3.419E+2	$3.30E{+}2$	3.300E+2	3.319E+2
	300	3.075E+1	2.84E+1	2.841E+1	2.852E+1	3.552E+0	3.48E + 0	3.475E+0	3.493E+0
	1000	9.807E-1	8.82E-1	8.814E-1	8.817E-1	1.236E-1	1.19E-1	1.193E-1	1.199E-1
Κ	270	_	_	2.554E+1	$2.576E{+1}$	_	_	7.434E-2	7.895E-2
	300	2.079E+1	1.92E+1	1.919E+1	1.929E+1	1.079E-1	1.04E-1	1.107E-1	1.154E-1
	1000	6.639E-1	5.99E-1	5.984E-1	5.986E-1	5.526E-2	5.37E-2	5.392E-2	5.441E-2
L1	61	_	5.13E+2	5.153E+2	5.183E+2	_	$5.27E{+1}$	5.337E+1	5.513E+1
	100	1.323E+2	1.21E+2	1.214E+2	1.217E+2	1.115E+1	1.09E+1	1.091E+1	1.110E+1
	300	5.262E+0	4.89E+0	4.890E+0	4.895E+0	3.532E-1	3.50E-1	3.500E-1	3.525E-1
	1000	1.648E-1	1.48E-1	1.479E-1	1.479E-1	1.970E-2	1.92E-2	1.915E-2	1.920E-2
M1	18	_	_	4.896E + 3	4.919E+3	_	_	4.155E+3	4.240E+3
	50	2.597E+2	-	2.365E+2	2.367E+2	7.018E+1	_	6.772E+1	6.834E+1
	100	3.328E+1	3.04E+1	3.037E+1	3.040E+1	4.956E+0	4.82E + 0	4.817E+0	4.845E+0
	300	1.320E+0	1.22E+0	1.215E+0	1.215E+0	1.170E-1	1.15E-1	1.151E-1	1.154E-1
	1000	4.110E-2	3.66E-2	3.658E-2	3.658E-2	5.300E-3	5.12E-3	5.117E-3	5.121E-3
N1	7	_	_	2.473E+4	$2.483E{+}4$	_	_	1.298E+5	1.311E+5
	10	9.595E+3	_	8.555E + 3	8.572E + 3	2.704E+4	_	$2.518E{+4}$	2.541E+4
	50	7.841E+1	_	7.063E+1	7.063E+1	2.569E+1	_	2.457E+1	$2.466E{+1}$
	100	1.004E+1	9.09E+0	$9.063E{+}0$	9.066E+0	$1.702E{+}0$	1.64E+0	$1.639E{+}0$	$1.643E{+}0$
	300	3.984E-1	3.62E-1	3.620E-1	3.620E-1	3.783E-2	3.67E-2	3.673E-2	3.678E-2
	1000	1.237E-2	1.09E-2	1.088E-2	1.089E-2	1.627E-3	1.55E-3	1.554E-3	1.554E-3

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

E0 Electronic factors for Z=10-95

with G. Gosselin, V. Meot, and M. Pascal

E0 Transition probability

$$W_{ic}(E0) =
ho^2(E0) imes \Omega_{ic}(E0)$$

Nuclear Atomic

Current Bricc Table

- composed from 3 tabulations
- Do not cover all energies and atomic shells
- > $\Omega(E0)$ and ICC tables are incompatible

New calculations using CATAR (H.C.Pauli, U.Raff 1975Pa26)

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

Z=82 E0 electronic factors

Need to compare with existing tabulations and <u>ratios of sub-shell CE intensities</u> of E0 transitions (K/L, L1/L2)

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

${}^{55}\text{Fe} + \text{e-} \rightarrow {}^{55}\text{Mn} + \nu$: *K*-Auger electrons (5 eV bins)

Slide courtesy of Kalman Robertson

Slide courtesy of Kalman Robertson

Table 6.1: Mean energy and intensity (per million nuclear disintegrations) of groups of atomic radiations in nuclear decay of 55 Fe in condensed phase. The August Model results are calculated using Approach 2 as explained in Section 6.3. For each transition group in the August Model results, the uncertainty in the mean energies is less than 30 eV and the uncertainty in intensity is less than 5%. The DDEP values agree with the EMISSION values except for the *LXY* transition intensity (indicated by *), which is 1.40 E 6 according to DDEP and 1.31 E 6 by running the EMISSION program. "Bound-bound X-rays" and "free-bound X-rays" are abbreviated "b-b X" and "f-b X." The bound-bound X-ray, Auger, CK and free-bound X-ray totals are the total energies released in these respective forms per million nuclear decays. The average energy released through atomic transitions per nuclear decay is (5890 ± 50) eV (see section 6.6).

Kalman Robertson, Honours Thesis, ANU, October 2010

Radiation	August Model		EMISSIO	N/DDEP	Howell		Stepanek	
	Energy	Intensity	Energy	Intensity	Energy	Intensity	Energy	Intensity
K_{α}	5925 eV	$2.492 \mathrm{E5}$	5895 eV	$2.50\mathrm{E5}$	5895 eV	$2.44\mathrm{E5}$	5860 eV	$2.44\mathrm{E5}$
K_{β}	$6530 \mathrm{~eV}$	$3.389\mathrm{E}4$	6512 eV	$3.40\mathrm{E}4$	$6490 \mathrm{~eV}$	$2.97\mathrm{E4}$	$6450~{ m eV}$	$2.91\mathrm{E4}$
L b-b X	665 eV	$4.340\mathrm{E}3$	565 eV	$4.90\mathrm{E3}$	635 eV	$3.30\mathrm{E3}$	$585 \mathrm{eV}$	$6.90\mathrm{E3}$
<i>M</i> b-b X	50 eV	< 1 E2	N/A	N/A	N/A	N/A	N/A	N/A
b-b X total	1701 MeV		$1700 { m MeV}$		$1636 { m MeV}$		1566 MeV	
KLL	5100 eV	$4.212 \mathrm{E5}$	5080 eV	4.66 E5	$5130 \mathrm{~eV}$	$4.87\mathrm{E5}$	5080 eV	$4.87\mathrm{E5}$
KLX	$5790 \mathrm{~eV}$	$1.653 \mathrm{E5}$	$5780 \ \mathrm{eV}$	$1.27\mathrm{E5}$	$5770~{ m eV}$	$1.20\mathrm{E5}$	$5730 \mathrm{~eV}$	1.19 E5
KXY	$6440~{ m eV}$	1.469 E4	$6450 \mathrm{~eV}$	8.62 E3	6420 eV	$8.20\mathrm{E3}$	$6370 \ \mathrm{eV}$	$7.30\mathrm{E3}$
LXY	$513 \mathrm{~eV}$	1.346 E6	$570 \ \mathrm{eV}$	$1.40 E6^{*}$	564 eV	$1.43 ext{E} 6$	561 eV	1.42 E6
LLX	$44 \mathrm{eV}$	3.563 E5	N/A	N/A	$55.2 \mathrm{eV}$	$3.10 \mathrm{E5}$	31.4 eV	2.63 E5
M and N								
Auger/CK	23 eV	1.396 E6	N/A	N/A	42 eV	2.77 E6	$38 \mathrm{eV}$	2.83 E 6
Auger/CK								
total	$3938 { m ~MeV}$		$3950~{ m MeV}$		$4170 { m ~MeV}$		$4240~{ m MeV}$	
f-b X	$40 \mathrm{eV}$	4.699E6	N/A	N/A	N/A	N/A	$11 \mathrm{eV}$	6.13 E6
f-b X total	$189 { m MeV}$		N/A		N/A		$68.3 { m MeV}$	